Il Belgio è uno dei pionieri nello sviluppo dell’energia nucleare. Anche se è entrato quasi casualmente nella storia atomica, per via del radio e dell’uranio trovati nelle miniere dell’allora “Congo Belga”, questo piccolo Stato ha poi partecipato nello straordinario sviluppo degli usi pacifici dell’atomo già a partire dagli Anni ’50.
Il Belgio è infatti il terzo paese dell’Europa occidentale, dopo il Regno Unito e la Francia, ad aver ottenuto una reazione nucleare a catena controllata in un reattore. L’11 maggio 1956, la prima reazione a catena controllata è stata ottenuta con il reattore di ricerca BR 1 (Belgian Reactor 1) al Centro degli Studi dell’Energia Nucleare, oggigiorno conosciuto come SCK CEN, che è ancora un fulcro vitale di esperimenti legati alle applicazioni nucleari vicino al villaggio di Mol, nella provincia di Anversa.
Molto presto dopo questo primo successo, il Belgio ha deciso di costruire un reattore di ricerca dedicato ai test sui materiali (il BR 2) e un terzo reattore sperimentale con l’obiettivo di produrre elettricità (BR 3).
Per quest’ultimo l’intenzione originale era di installarlo sul sito dell’Expo 58 a Bruxelles, sito dell’emblematico Atomium, ma il sito del SCK CEN fu poi scelto per ovvie considerazioni pratiche. Con una capacità di 11,2 MWe, il BR3 è stato collegato alla rete già nell’ottobre 1962. Questo primo reattore ad acqua pressurizzata (PWR) in Europa doveva servire, tra l’altro, a formare il personale delle future centrali di Doel e Tihange. Dal 1963 in poi, fu anche usato per testare il combustibile MOX (Miscela di Ossidi di Uranio e Plutonio) in condizioni reali. Nel 1987 è stato definitivamente spento dopo 11 cicli di funzionamento e fu allora designato come impianto pilota per la ricerca sullo smantellamento dei reattori da parte della Commissione Europea, operazione che è stata completata recentemente.
La prima centrale nucleare commerciale costruita dai Belgi in collaborazione con i Francesi si trova nella zona di Givet, a Chooz, sulle rive della Mosa. Questo impianto PWR, con il reattore più potente del mondo all’epoca (242 MWe), ha iniziato a fornire elettricità alla rete nel 1967 ed è stato chiuso definitivamente nel 1991. La centrale di Chooz A ha permesso ai Belgi e ai Francesi di acquisire know-how ed esperienza sia nella fabbricazione di attrezzature per i futuri impianti nucleari che nella gestione di una centrale.
Dopo la messa in funzione di Chooz A, i Belgi hanno deciso di lanciare il loro programma di energia nucleare. Sono stati scelti due siti: Doel sulla riva sinistra della Schelda, a valle di Anversa, e la zona industriale di Tihange sulla riva destra della Mosa, a monte di Liegi.
I primi reattori sono stati messi in funzione a livello industriale nel 1975 (Doel 1, Doel 2 e Tihange 1). Tra il 1982 e il 1985, a queste tre unità si sono aggiunte Doel 3, Tihange 2, Doel 4 e Tihange 3.
Il sito nucleare di Tihange
All’epoca della messa in funzione dei primi reattori, tre quarti della produzione di elettricità del Belgio erano generati dal carbone, mentre negli anni ’80 la quota nucleare è passata in media intorno al 66%.
Ora, nel 2021, l’elettricità prodotta da fissione atomica rimane attorno al 50% del fabbisogno di elettricità, ponendo il Belgio tra i paesi europei con le più basse emissioni di gas a effetto serra, accompagnato dall’aumento dell’eolico offshore.
Un cambiamento importante è però incombente, siccome la legge del 31/01/2003 prevede una chiusura di tutte le centrali alla fine del loro limite legale, fissando di fatto una data di chiusura a 40 anni dalle prime operazioni. A causa di mancanza di alternative di approvvigionamento elettrico, si è già derogato ben due volte a questa legge (nel 2013 e 2015), portando la vita legale dei reattori di Tihange 1 e di Doel 1 e Doel 2 a 50 anni di operazioni.
L’attuale accordo di governo prevede però di prendere in considerazione ciecamente la chiusura prevista dalla legge del 2003. Tale applicazione comporterebbe una chiusura di tutti e 7 i reattori belgi tra il 1° ottobre 2022 e il 1° dicembre 2025 e il dibattito su come rimpiazzare la loro capacità di 6 GW è molto acceso. Oltre a una dose massiccia di importazioni, la speranza di poter garantire la stabilità energetica riposa su nuove costruzioni di centrali a gas, l’opzione più flessibile sul mercato per poter compensare le fluttuazioni delle energie rinnovabili a intermittenza (eolico e solare).
Ma la storia del nucleare in Belgio è ben più estesa della produzione di elettricità, e quando si parla di medicina nucleare, raggiunge una dimensione di eccellenza. Tornando al BR2, il reattore ad alto flusso neutronico che è stato commissionato nel 1961, oltre alla ricerca sul comportamento dei materiali e dei combustibili sotto irradiazione, è anche usato per produrre radioisotopi a fini medici e industriali, rifornendone tra il 20 e il 25% del fabbisogno mondiale. Un’ultima applicazione per la quale il BR2 sarà presto utilizzato è la produzione di Plutonio-238 per alimentare i generatori termoelettrici a radioisotopi per le missioni di esplorazione spaziale.
Gran parte dei radioisotopi per scopi medici prodotti al BR2 sono poi ripresi dall’l’Istituto nazionale dei RadioElementi (IRE), sul sito di Fleurus, che dagli anni ‘70 ha cominciato la produzione di Molibdeno-99 per fini diagnostici e Iodio-131 a fini terapeutici. Oggi l’IRE gode di una reputazione di leader internazionale nel campo, mentre sviluppa nuove tecniche e radioisotopi, come il Gallio-68 e il Lutezio-177.
Un’altra azienda belga, la Ion-Beam Applications (IBA) situata a Louvain-La-Neuve, è diventata la leader mondiale nella produzione di ciclotroni, ossia acceleratori di ioni più compatti e precisi per poter creare dei fasci ben controllati. L’applicazione maggiormente degna di nota è quella del trattamento dei tumori, dove i ciclotroni possono portare benefici rispetto ad altre tecniche grazie alla loro maggiore precisione, che comporta un minore danno alle cellule sane circostanti al tumore.
Guardando ancora oltre verso il futuro, il progetto MYRRHA del SCK CEN, ossia il “reattore di ricerca versatile per applicazioni ad alta tecnologia”, è probabilmente tra i progetti più innovativi nel campo del nucleare. Questo reattore raffreddato a una miscela eutettica di piombo e bismuto e alimentato da un acceleratore di protoni che lo rende quindi intrinsecamente sicuro in quanto subcritico. Il progetto ha l’ambizione di poter riciclare il combustibile usato, riducendo così la mole e l’emivita media degli elementi che dovranno essere depositati in via definitiva. Il tutto producendo radioisotopi per la medicina nucleare, permettendo test su materiali per reattori di nuova generazione e offrendo delle piattaforme a ricerche di fisica fondamentale.
Questa piccola Nazione dimostra così come la tecnologia nucleare possa creare non solo elettricità a basso impatto ambientale, ma anche innovazione, posizioni lavorative altamente qualificate e progresso in campi che raramente sono associati al nucleare, come la medicina e lo spaziale
Di Fabio Nouchy fonte@ associazioneitaliananucleare.it/