Type to search

Scienza: sviluppata formula per costruire Dna senza errori

Share

Una ricerca internazionale, a cui ha collaborato un team della Sapienza, ha sviluppato un metodo per individuare la soluzione ottimale e più efficiente per costruire strutture complesse con mattoncini di DNA attraverso un meccanismo di auto-assemblaggio. La scoperta apre a nuove prospettive per la progettazione di nanomateriali e per applicazioni in campi come la fotonica e la nanoelettronica. I risultati sono pubblicati su Science. Tutti i bambini, avendo tra le mani i mattoncini lego o i pezzi di un puzzle, hanno provato almeno una volta a realizzare una costruzione o a ricomporre l’immagine nascosta nelle tessere. Riuscire ad assemblare le molecole di DNA, come fossero i mattoncini lego o i pezzi di un puzzle, per realizzare strutture complesse come i cristalli, è l’ultima frontiera della fisica. Il DNA si presta a essere utilizzato a tale scopo, grazie alla complementarietà delle quattro basi azotate, che lo rende molto versatile e adatto a unirsi in composti. Attraverso un meccanismo detto di ‘auto- assemblaggio’ le molecole stesse, anche in enorme numero, formano una struttura organizzata come conseguenza di interazioni specifiche e locali tra i costituenti, senza azioni esterne. Tuttavia, riuscire a ottenere e a controllare l’auto-assemblaggio delle particelle non è semplice. Data una determinata struttura, la sfida è riuscire a sintetizzarla in maniera corretta ed efficiente, riducendo il più possibile il numero delle diverse componenti necessarie. Una collaborazione internazionale ha cercato di indagare a fondo il problema in uno studio in uscita su Science. Tra gli esperti coinvolti anche Lorenzo Rovigatti, Francesco Sciortino e John Russo del Dipartimento di Fisica della Sapienza, insieme ai colleghi della Ca’ Foscari, di Columbia e della Arizona State University. Riprendendo l’esempio precedente, i mattoncini lego e i pezzi di un puzzle sono in realtà due processi alternativi e diversi di costruzione. I primi sono tutti simili tra loro e sono progettati in modo da potersi legare con qualsiasi altro mattoncino per creare infinite forme. I secondi invece sono tutti diversi e si legano solo al loro corrispondente, in una posizione ben precisa, per formare un disegno predefinito. La scelta degli scienziati sta dunque nel mezzo: non mattoncini tutti uguali per avere infinite strutture, né pezzi tutti diversi per ottenere il risultato voluto, ma il numero minimo di elementi diversi per creare esattamente e solamente la conformazione cercata. La chiave per arrivare alla soluzione è stata la traduzione di questo problema teorico, e quindi della struttura desiderata, in un insieme di clausole logiche semplici. Queste possono essere poi risolte numericamente, ricavando così una soluzione ottimale ed efficiente per qualsiasi forma. Per dimostrare la validità del metodo, gli autori hanno deciso di realizzare sperimentalmente l’auto-assemblaggio di un cristallo scelto per le sue proprietà fotoniche su scala nanometrica, il pirocloro, “un cristallo che non esiste in natura ed era considerato impossibile da realizzare sperimentalmente” – dice John Russo, del Dipartimento di Fisica – Per crearlo sono state utilizzate particelle interamente composte di DNA (in gergo ‘DNA origami’). In questo modo è stato possibile dimostrare che come previsto si forma precisamente la struttura richiesta, in una sorta di puzzle da soli quattro tipi di pezzi che infallibilmente si assembla da solo.
“Il lavoro si basa sull’idea di utilizzare uno strumento matematico chiamato “Soddisfacibilità booleana”, anche noto come SAT, per risolvere il problema di auto-assemblare strutture ordinate a partire da un numero limitato di mattoncini. Il vantaggio di usare il SAT è che, oltre a ottenere una soluzione che assembli la struttura ordinata voluta, permette anche di affinare la soluzione affinché eventuali strutture che competono con quella target vengano sfavorite – dichiara Lorenzo Rovigatti del Dipartimento di Fisica – In questo lavoro applichiamo questa tecnica sofisticata per progettare al computer e poi ottenere in laboratorio un materiale cristallino mai stato assemblato prima, dimostrando chiaramente le potenzialità del nostro metodo, che abbiamo ribattezzato ‘SAT-assembly’”. Questo approccio innovativo alla formazione spontanea delle strutture offre una nuova prospettiva per la progettazione di nanomateriali, consentendo di costruire strutture composte da miliardi di componenti disposti con assoluta precisione e aprendo la strada ad applicazioni in campi come la fotonica e la nanoelettronica.(AGI)
SCI/ADV